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In this study, we consider the effects of linear and nonlinear instability waves on
the near-field dynamics and aeroacoustics of two-dimensional laminar compressible
mixing layers. Through a combination of direct computations, linear and nonlinear
stability calculations, we demonstrate the significant role of nonlinear mechanisms in
accurately describing the behaviour of instability waves. In turn, these processes have
a major impact on sound generation mechanisms such as Mach wave radiation and
vortex pairing sound. Our simulations show that the mean flow correction, which is
required in order to accurately describe the dynamics of large-scale vortical structures,
is intrinsically tied to the nonlinear modal interactions and accurate prediction of
saturation amplitudes of instability waves. In addition, nonlinear interactions are
largely responsible for the excitation and development of higher harmonics in the
flow which contribute to the acoustic radiation. Two flow regimes are considered:
In supersonic shear layers, where the far-field sound is determined by the instability
wave solution at sufficiently high Mach numbers, it is shown that these nonlinear
effects directly impact the Mach wave radiation. In subsonic shear layers, correctly
capturing the near-field vortical structures and the interactions of the subharmonic
and fundamental modes become critical due to the vortex pairing sound generation
process. In this regime, a method is proposed to combine the instability wave solution
with the Lilley–Goldstein acoustic analogy in order to predict far-field sound.

1. Introduction
The major role that discrete instability waves play in determining the acoustic

radiation from mixing layers and jets has prompted a need to understand the
fundamental linear and nonlinear processes that affect their behaviour. Several major
advances in aeroacoustics, such as the work of Tam & Morris (1980), Tam & Burton
(1984a , b) and Goldstein & Leib (2005), have been predicated on the ability of linear
instability wave theory to predict sound from supersonic shear layers. However, few
studies thus far have addressed the relative importance of nonlinear instability wave
interactions and mean flow interactions to the sound generation process. In this
paper, we contrast the sound radiation mechanisms from two-dimensional supersonic
and subsonic laminar mixing layers forced by linear and nonlinear instability waves.
Using the nonlinear Parabolized Stability Equations (PSE) and direct calculations,
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we demonstrate the importance of nonlinear interactions in accurately predicting the
spatial evolution of these mixing layers and, as a result, the far-field radiated sound.

This work seeks to answer several open questions concerning the behaviour of
instability waves and their link to acoustic radiation. For instance, the importance
of modal interactions in capturing the overall shear layer dynamics and the resulting
acoustic radiation has not been addressed directly in the literature. Also, in cases of
Mach wave radiation from mixing layers and jets, questions often arise regarding the
necessity of including nonlinear effects, or whether a simple accounting of the mean
flow spreading is sufficient. To address these questions, we consider the behaviour of
discrete instability waves which are at the origin of two sound generation processes
in mixing layers: Mach wave radiation and vortex sound. Through careful analysis
we can isolate the various effects due to nonlinear modal interactions, mean flow
corrections and inlet conditions and also determine their relative influence on the
radiated sound levels in each case.

1.1. Prior work

Several previous theoretical studies are directly relevant to the present study and are
worth noting. From the early work of Crighton & Gaster (1976), Tam & Morris
(1980) and Tam & Burton (1984a , b), to the more recent studies by Avital, Sandham
& Luo (1998a , b), Wu (2005) and Goldstein & Leib (2005), these theories have formed
the basis for explaining the dynamics of linear instability waves, and established their
role in the aeroacoustics of jets and mixing layers. For instance, in the work of
Crighton & Gaster (1976), they developed methods to model the growth of instability
waves in a slowly diverging jet flow through the multiple scales method. This was
also used in Tam & Morris (1980) and Tam & Burton (1984a , b), where they found
that the linear stability solution could be extended into the far field to capture the
acoustic radiation from high-speed supersonic mixing layers.

At the same time, however, several important studies also indicated that interactions
between instability waves were responsible for the generation of large vortical
structures that appear in mixing layers when harmonically forced. From experimental
evidence gathered by Brown & Roshko (1974) and Winant & Browand (1974), the
work of Ho & Huang (1982) and Laufer & Yen (1983) noted that the interaction
between the subharmonic and fundamental modes leads to the vortex pairing process
and plays a significant role in determining the acoustic source location. In the review
by Tam (1995), the link between large vortical structures, instability waves and sound
emission is further discussed in the context of supersonic jet noise.

More recent work has focused attention on the nonlinear developmentof instability
waves and more complex models of instability wave based sound generation in mixing
layers. For instance, wave packet models were employed by Avital et al. (1998a) to
study Mach wave radiation for time-developing mixing layers. Their analysis indicated
that the most dominant mode for acoustic radiation was a two-dimensional mode
which evolved from the nonlinear development of the mixing layer. Additional work
regarding the nonlinear evolution of supersonic instability waves in Mach wave
radiation was carried out by Wu (2005). Using a matched asymptotic expansion
combined with the multiple scales method, he accounted for the nonlinear spatial
evolution of the instability wave through nonlinear terms arising from the critical layer.
The influence of nonlinear mechanisms in sound generation has also been examined
by Sandham, Morfey & Hu (2006) in their study of convecting vortex packets. Their
formulation was based on a pair of linearized Euler equations and restricted the
nonlinear interactions to the source terms of the Lilley–Goldstein acoustic analogy.
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A comprehensive study has not yet been undertaken to determine the role of
nonlinear instability wave interactions in capturing the dynamics of vortical structures,
nor their importance in determining the level and directivity of acoustic radiation. At
finite amplitudes, the growth of the instability waves affects the evolution of the mean
flow, which can in turn trigger the growth (or dampening) of higher harmonics in the
flow. This phenomena naturally raises questions of whether the initial amplitudes and
inlet conditions for instability waves have a sizable effect on the downstream evolution
of the shear layer and the resulting acoustic radiation. One can also ask whether the
eventual saturation of instability waves is mainly due to the effects of mean flow
spreading, or if the transfer of energy between modes plays a more significant role.
Some questions still remain as to whether the presence of large vortical structures
in shear layer and jet flows can be accounted for independently of the instability
wave dynamics, or if the development of such structures is intrinsically tied to the
interactions of the instability waves. Previous work by Hultgren (1992) sought to
answer these questions through the use of matched asymptotic analysis on weakly
non-parallel incompressible mixing layers, but a fully nonlinear study has yet to be
undertaken.

A natural approach to investigating these questions is to use the Nonlinear
Parabolized Stability Equations (NPSE). Since its development by Herbert &
Bertolotti (1987) and Bertolotti, Herbert & Spalart (1992) in the study of boundary
layer transition, the PSE has been used in many relevant studies of aeroacoustic and
fundamental mixing layer problems. For instance, Balakumar (1994, 1998) and Yen
& Messersmith (1998) used linear PSE to calculate the instability wave behaviour for
Mach 2.1 jets, and more complex linear and nonlinear PSE calculations were also
carried out by Malik & Chang (2000). In their study of the structure and stability of
compressible reacting mixing layers, Day, Mansour & Reynolds (2001) also used the
technique to examine mixing effectiveness.

NPSE can accommodate the effects of nonlinear mode interactions, non-parallel
flow and finite amplitude disturbances. It therefore extends beyond linear instability
wave methods and more accurately models the near-field evolution and the far-field
aeroacoustics of the mixing layer. Furthermore, the ability of PSE to probe each
of the nonlinear effects in isolation or in a combined manner can yield tremendous
physical insight into the processes underlying the mixing layer dynamics and sound
radiation. For instance, one can investigate the effects of multiple mode interactions
either alone, or in conjunction with the mean flow correction.

Although the general shear layer problem includes complex three-dimensional fluid
motions arising from a broadband spectrum of forcing, the current study focuses on
nonlinear effects between discrete instability waves leading to the creation of large
two-dimensional roller structures in the flow and their implications on the subsequent
sound generation. While many previous DNS investigations (Sandham & Reynolds
1991; Rogers & Moser 1992) have shown that the three-dimensional evolution of the
mixing layer eventually leads to the growth of streamwise rib vortices and spanwise
‘kinking’ of the rollers, our objective is to gain a fundamental understanding of
the two-dimensional processes first, before attacking the complete three-dimensional
problem. While the formulation’s assumptions limit the method to slowly evolving
convectively unstable flows, the capabilities of the PSE are well suited for the scope
of this paper’s objectives.

To date, few studies have examined the link between the near-field dynamics
of nonlinear instability waves with the radiated acoustic field. In Mach wave
radiation, the instability wave is directly coupled to the acoustic field, but in
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vortex sound generation, an additional nonlinear mechanism is responsible for the
acoustic radiation. The creation of sound sources through the nonlinear interaction
of instability waves can be analysed through the acoustic analogy method (Lighthill
1952; Phillips 1960; Lilley 1974), and may capture the sound generation process more
completely than a pure instability wave theory. Recent advances by Goldstein (2001,
2003, 2005) have led to the development of a ‘generalized acoustic analogy’, and a
method based on filtering in the wavenumber frequency domain was proposed to
better understand the ‘true’ sources of sound. The generalized acoustic analogy has
been used by Goldstein & Leib (2005) to attack the problem of instability waves in
a non-parallel base flow, but remains restricted to linear processes.

1.2. Outline

The primary objective of this study is to address several unanswered questions
regarding the linear and nonlinear behaviour of instability waves and their relationship
to sound generation in mixing layers. Using a combination of direct computation,
linear and nonlinear stability methods, the importance of nonlinear interactions
and mean flow corrections to the shear layer dynamics will be illustrated. Three
two-dimensional mixing layers, one supersonic and two subsonic, are examined in
detail, and two different mechanisms for sound generation – Mach wave radiation
and vortex pairing sound – are discussed. In each case, the coupling between the
instability waves’ near-field hydrodynamics and their radiated far field sound will be
examined. In instances where instability wave theory is not expected to provide a
complete description of the acoustic radiation, we show how the formulation can be
extended using Lilley’s acoustic analogy.

The basic problem description and computational details are provided in § 2. The
shear layer dynamics and the acoustic radiation characteristics of a typical supersonic
and subsonic mixing layers are compared and contrasted in § 3. In § 4, the mixing
layer results from linear and nonlinear theory are presented, followed by a detailed
discussion of the results for the subsonic mixing layer. Finally, the combined instability
wave acoustic analogy technique is shown in § 6 before the conclusion.

2. Methodology
2.1. Problem description

The primary focus of this investigation is on the aeroacoustics of two-dimensional
laminar compressible mixing layers. An upper speed stream with velocity U1 overlies
the lower speed stream U2 and the resulting shear causes the mixing layer to develop
downstream in the x direction, as represented schematically in figure 1. Conceptually,
we divide the domain into a near-field region, where the hydrodynamic motions are
dominant, and a far-field region, where the acoustic behaviour is to be determined.
In addition, the mixing layer is artificially excited by particular instability waves that
are imposed at the inlet location. These inlet instability waves for all calculations
were obtained by solving the parallel flow linear stability problem defined by the
Rayleigh equation (A 8). The fundamental frequency of the instability waves ω0 is
chosen based upon the most unstable frequency at the inlet of the mixing layer. An
instability wave corresponding to the subharmonic frequency ω0/2 was also included
in the subsonic mixing layer case where vortex pairing was to be studied.

This method of artificial excitation generally leads to the development of highly
organized periodic vortex structures as the mixing layer evolves downstream. Although
this artificial forcing limits a broadband spectrum from developing and precludes
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Simulations M1 M2 Re�U St0 Uc/a1 Mr,1 Mr,2

M29M1 2.9 1.0 1283 0.0419 1.95 0.762 1.138
M25M15 2.5 1.5 3000 0.230 2.00 0.509 0.491
M050M025 0.50 0.25 250 0.201 0.375 0.128 0.122

Table 1. Flow conditions for the mixing layer computations. The Reynolds number is
calculated as Re�U = ρ1(U1 − U2)δ0/μ1.

U1 Far field

Near field

Far field

y

x

U2

Figure 1. Schematic representation of two-dimensional compressible forced mixing layer.

the more complicated turbulent motions of realistic shear flows, it does allow us
to investigate the sound generated by specific instability modes and examine the
interactions between different modes. Oblique modes were also excluded from the
forcing in order to focus on two-dimensional nonlinear interactions and their effects.
While the oblique modes tend to be more unstable under higher speed conditions,
the influence of three-dimensional structures on sound generation first requires a
detailed understanding of the mechanisms of sound radiation from two-dimensional
structures.

In table 1, the relevant parameters for three compressible two-dimensional shear
layers are given. Both subsonic and supersonic shear layers are included, and they
can be characterized based on the convective velocity Uc (Papamoschou & Roshko
1988) and relative phase velocity Mr,i , as defined by

Uc =
a2U1 + a1U2

a1 + a2

, Mr,i =
|ω/Re {α} − Ui |

ai

,

where i = 1, 2, and α and ω are the wavenumber and temporal frequency of the
primary instability mode, respectively. The speed of sound in the upper and lower
streams is denoted by a1 and a2, respectively, and Re{•} denotes the real part of the
argument. In this study, mixing layers are classified as subsonic if Mr,i < 1 in both
streams, and as supersonic otherwise. In all of the tabulated cases, the temperature
ratio between the upper and lower streams was set to T2/T1 = 1, the Reynolds number
Re�U was based on the velocity difference �U = U1 − U2, initial vorticity thickness δ0

and upper stream density ρ1 and μ1. The Strouhal number of the forced fundamental
frequency was defined by St0 = ω0δ0/(2π�U ). The parameter Mr,i indicated the general
acoustic radiation characteristics of the instability wave into the upper (i =1) and
lower stream (i =2) of the mixing layer. In cases where Mr,i > 1, the instability wave
is capable of radiating directly into the corresponding stream in the form of Mach
waves, while cases of Mr,i < 1 suggest that a different mechanism of sound radiation
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Figure 2. The phase speeds Mr,1 ( ) and Mr,2 ( ) for the forced instability modes.
(a) The fundamental mode of M29M1 and subharmonic mode of M050M025. (b) The first
harmonic of M29M1 and fundamental mode of M050M025.

is responsible. In the subsonic mixing layers M25M15 and M050M025, Mr,i stated
in the table corresponds to the fundamental mode at the inlet. The variation of Mr,i

with downstream distance for these flows is shown in figure 2. For the supersonic
mixing layer M29M1, Mr,i is given for the first harmonic, which is the mode initially
radiating at the inlet. Results from these shear layers, and simplified models of their
behaviour, will be presented in subsequent sections.

2.2. Computational models

The behaviour of the instability waves in two-dimensional compressible laminar
mixing layers can be determined through the direct computation of the governing
Navier–Stokes equations (2.1a)–(2.1d) for the density ρ, velocities ui , temperature T ,
pressure P and dissipation function Φ . Details regarding the simulations, including
the numerical methodology and boundary conditions used in the code, are discussed
in Appendix A 1.

∂ρ

∂t
+

∂

∂xi

(ρui) = 0, (2.1a)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −∂P

∂xi

+
1

Re

∂

∂xj

τij , (2.1b)

ρ

(
∂T

∂t
+ uj

∂T

∂xj

)
=

γ

Re Pr

(
∂

∂xj

μ
∂T

∂xj

)
− γP

(
∂uj

∂xj

)
+

1

Re
Φ, (2.1c)

P =
γ − 1

γ
ρT . (2.1d)

In conjunction with the direct computations, an instability wave model was also
used to probe the nonlinear interactions between modes. Using φ = [ρ u1 u2 T ]T as
the vector of flow variables, this model represented the discrete instability waves in

terms of spatially evolving, finite amplitude modes φ̂m(x, y) in a slowly developing
mean flow. Through the use of the parabolizing approximations (A 5)–(A 6), the
nonlinear evolution equation (2.2) can be used to track the behaviour of the instability
waves given the nonlinear interaction term Fm and amplitude factor Am defined in
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Figure 3. Real part of the far-field pressure P̂1(x, y), superimposed on the instantaneous
near-field spanwise vorticity, for the (a) M29M1 and (b) M050M025 mixing layers. Pressure
contour levels: (a) −3.5 × 10−2 to 3.5 × 10−2 in steps of 3.5 × 10−3, (b) −5 × 10−6 to 5 × 10−6

in steps of 5 × 10−7.

Appendix A 2.

Lm{φ̂m} =
Fm

Am

. (2.2)

In some subsonic shear layers, this model was used to compute the source terms in
Lilley’s acoustic analogy (Lilley 1974) in order to capture the sound radiated from
vortex pairing processes. Further discussion of the combined PSE-acoustic analogy
method is found in Appendix A 2, along with a more comprehensive description of
the PSE implementation and methodology.

3. Direct computations
The differences between Mach wave radiation and vortex sound generation can be

best illustrated by examining the direct calculations of the supersonic (M29M1) and
subsonic (M050M025) mixing layers. In the supersonic mixing layer, the instability
mode forcing at the inlet triggers a direct response in the far-field pressure, resulting
in strong Mach wave radiation downstream (figure 3a). This is evident in situations
where the phase speed of the instability mode is supersonic relative to the free stream,
such as for the fundamental and first harmonic modes. For the first harmonic, Mr,2

is supersonic at the inlet (figure 2), and thus the mode can radiate into the lower
stream immediately, while the fundamental mode is initially subsonic (Mr,1 = 0.97 and
Mr,2 = 0.93 at the inlet). However, as the fundamental mode evolves downstream, Mr,2

becomes supersonic and Mach wave radiation is also seen at that frequency. A rough
estimate of the wavefront geometry in the lower stream of figure 3(a) gives a Mach
angle of ≈ 60◦, corresponding to the downstream value of Mr,2 = 1.15 in figure 2(a).

On the other hand, the values of Mr,i remain firmly subsonic for the entire domain
for the M050M025 mixing layer, and the acoustic radiation mechanism is distinctly
different. Rather than strongly emitting sound at a particular angle downstream, the
majority of the sound in the subsonic mixing layer originates from a single point
inside the shear layer. The inclusion of both the fundamental and the subharmonic
frequency in the subsonic mixing layer leads to vortex roll up, and consequently, vortex
pairing occurring near the apparent acoustic source origin. This correlation was noted
previously by Ho & Huang (1982) and in the work of Colonius, Lele & Moin (1997).
In addition, the location of vortex pairing is linked to the point of saturation for
the subharmonic and fundamental modes. From figure 4(b), one can determine that
the maximum modal energy, as determined by (A 2), for the subharmonic (E1) and
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Figure 4. (a) Modal energy for the fundamental mode (E1(x)) and first harmonic (E2(x)) of
the supersonic mixing layer M29M1. (b) The modal energy for the subharmonic (E1(x)) and
fundamental (E2(x)) mode of the subsonic mixing layer M050M025.

the fundamental (E2) also occurs near x ≈ 100, and around this location the largest
nonlinear interactions between the two modes can be expected to occur.

In contrast, the nonlinear interactions of simulation M29M1 alter the characteristics
of the hydrodynamic near field to a lesser degree, but still influence the resulting sound
field. The near-field vorticity in figure 3(a) shows a lack of vortex pairing due to the
absence of the subharmonic frequency, and less well-defined vortex roll up compared
to the subsonic M050M025 mixing layer. However, nonlinear interactions play a
significant role in the excitation of the first harmonic, which can also radiate strongly
to the far field. Unlike the fundamental mode, the first harmonic is not forced at high
amplitudes at the inlet, but grows to an appreciable amplitude due to interactions
with other modes (see figure 4a). The radiation patterns of the first harmonic are
similar to the Mach wave radiation of the fundamental, as discussed in § 4.1.

Lastly, the direct calculations of the supersonic and subsonic mixing layers also
illustrate differences in the behaviour of the pressure eigenfunction, depending on
the phase speed of the instability wave relative to the free stream. In the subsonic
M050M025 mixing layer, the phase speed of the instability wave is subsonic relative
to both streams, leading to two distinct regions of behaviour. Close to the sheared
region of the flow, the pressure eigenfunction exhibits purely exponential decay in
the y-direction, which is the expected behaviour from classical instability wave theory
(figure 5b). For |y| > 15, however, the pressure eigenfunction transitions to a slower
algebraic decay, which would signal a shift to acoustic wave propagation. In the
corresponding figure for the supersonic mixing layer (figure 5a), this transition in
the pressure P̂1(y) only occurs on the upper stream side, where Mr,1 = 0.855 at the
location x = 275. In the lower stream, where the relative phase speed Mr,2 = 1.04 at
the same location, the instability wave is directly coupled to acoustic disturbances
propagating in the free stream and a very slow exponential decay persists, becoming
visible as Mach wave radiation.

4. Linear and nonlinear stability calculations
The extent to which linear and nonlinear stability calculations can capture the

flow and acoustic behaviours observed in § 3 is examined next using a series of PSE
simulations. The results for the supersonic mixing layer are discussed first, followed
by the computations for the two subsonic cases.
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Figure 5. Pressure cross-sections |P̂1(y)| for (a) M29M1 mixing layer at x = 275 and
(b) M050M025 mixing layer at x = 250.
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Figure 6. (a) Pressure field Re{P̂1} of the fundamental mode, as calculated by nonlinear PSE,

plotted using same contours as figure 3(a). (b) Pressure field Re{P̂2} of the first harmonic,
plotted using contours from −2.75 × 10−3 to 2.75 × 10−3 in steps of 2.75 × 10−4.

4.1. Supersonic mixing layer

4.1.1. Acoustic and near-field predictions

The ability of nonlinear PSE to capture the acoustic and hydrodynamic behaviour
of the supersonic mixing layer M29M15 is shown qualitatively in figure 6. Strong
Mach wave radiation is encountered at both the fundamental and first harmonic
frequencies, and matches the acoustic behaviour of the direct calculation shown in
figure 3(a). The angle of the Mach wave radiation to the upstream axis matches the
values determined from the results of § 3. At the fundamental frequency, the Mach
angle in the lower stream agrees with the previously estimated 60◦, and measurements
of the Mach wave give a value of Mr,2 ≈ 1.05 for the first harmonic mode, which is
in close agreement with the value obtained from the direct calculation.

Contours of the spanwise vorticity plotted in figure 7 show that large-scale features
of the flow are well represented by the current instability wave model. The streamwise
evolution of the instability waves responsible for creating vortical structures in the
flow is illustrated in figure 8(a). The growth of the modal energy E1(x) at the
fundamental frequency and E2(x) at the first harmonic closely follows the results
from the direct calculations. Similarly, the behaviour of the acoustic pressure P̂m in
both the streamwise and cross-stream directions is consistent with the Mach wave
radiation previously observed. In figure 8(b), we can see that the strength of the
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Figure 7. Near-field vorticity contours for the M29M1 mixing layer, computed by (a) direct
calculation and (b) nonlinear PSE. Contours range from −1.5 to 1.5 in steps of 0.1.
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Figure 8. (a) Integrated modal energy E1(x) for the supersonic mixing layer M29M1. (b)

streamwise pressure behaviour |P̂1(x)| at y = 0 and y = −30. (c) The pressure |P̂1(y)| at x = 60

and x = 275 at the fundamental frequency. (d) The pressure |P̂2(y)| at x = 290 at the first
harmonic. Direct calculation: solid line ( ), nonlinear PSE: dashed line ( ), linear PSE:
dash-dot line ( ).

radiated pressure P̂1(x, y = −30) is directly linked to the growth of the instability
wave itself, and the difference in downstream eigenfunction behaviour, depending on
whether Mr,i is supersonic or subsonic (figure 8c).

4.1.2. Nonlinear effects

The effects of nonlinearity can be easily shown by comparing the nonlinear
calculations with results from linear PSE and direct calculations. At the fundamental
frequency, the evolution of the instability wave is well captured by the linear
calculation (figure 8a), and the radiated Mach waves show good agreement with



Linear and nonlinear processes in mixing layers 331

0 100 200 300

1.0

1.5

2.0

2.5

3.0

x/δ0

0 100 200 300
x/δ0

δw

(a) (b)

1

2

3

4

5

6

Figure 9. Comparison of the mean vorticity thickness for (a) M25M15 and (b) M050M025
subsonic mixing layer. Direct calculation: solid line ( ), nonlinear PSE: dashed-dot line
( ), linear PSE: dashed line ( ).

previous calculations. On the other hand, linear predictions for the development
of the first harmonic diverges with results from both nonlinear PSE and direct
calculations. The initial amplitude of the first harmonic in the linear PSE simulation
is identical to the nonlinear case, but the growth rates remain constantly lower.
As a consequence, the far-field acoustic radiation is severely underestimated at this
frequency (figure 8d ). This suggests that in order to accurately account for the Mach
wave emission at all of the radiating frequencies, nonlinear interactions between
instability modes must be included.

4.2. Nonlinear effects in subsonic calculations

The presence of nonlinear effects become more visible in the two subsonic mixing
layers M25M15 and M050M025. As instability waves cause vortex roll up and pairing
to occur in the subsonic mixing layers, nonlinear mechanisms such as the mean flow
correction and the transfer of energy between modes drastically alter the downstream
evolution of the overall mixing layer. The precise influence of these nonlinear effects
can be determined using a series of three PSE computations of the subsonic mixing
layers.

In the first series, a purely linear stability theory (linear PSE) is used to calculate
the behaviour of the instability waves without the presence of a mean flow correction
and excludes the possibility of nonlinear interactions between modes. The second
set of calculations uses a partially linear theory, where linear PSE is used with a
previously computed mean flow correction but still excluding nonlinear interactions.
The third set of calculations is fully nonlinear, using nonlinear PSE with the mean
flow correction and including all interactions between modes.

For both subsonic mixing layers, the correction to the mean flow was quite sizable,
and was seen to have a large effect on the evolution, and hence, acoustic behaviour
of the instability modes. At its peak location near the point of saturation, the
corrected mean flow vorticity thickness was two to three times the uncorrected value
(figure 9). Nevertheless, the mean flow correction procedure in the full nonlinear PSE
calculations accurately predicted the growth of the mean flow.

The sudden expansion of the mean flow due to vortex pairing led to significant
changes in instability wave growth. In the linear and nonlinear cases where the
mean flow correction was included, the location of maximum vorticity thickness also
corresponded to the saturation locations of the first two instability modes (figure 10).
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In the case of the purely linear PSE simulations, the absence of any mean flow
correction resulted in continued exponential growth for the first two modes. While all
calculations yielded similar growth rates in the linear regions of the flow, using a purely
linear theory without compensating for the mean flow would lead to unreasonably
large amplitudes for these modes. These observations are consistent with the findings
of Hultgren (1992).

Nonlinear interactions between modes also played a significant role in
determining the proper final amplitudes for instability modes. Using a linear PSE
approach with mean flow correction captured the eventual saturation of the
fundamental mode (E2) of mixing layer M050M025, but a fully nonlinear
theory is required to predict the correct saturation amplitude. The inclusion of
nonlinear interactions is also required to capture the growth of higher harmonics.
The fully or partly linear PSE calculations predict that the first harmonic mode (E2) of
M25M15 remains relatively neutral, and stays at a relatively small amplitude before
eventually decaying downstream (figure 10a). However, under the fully nonlinear
theory, the first harmonic is correctly shown to be initially unstable, and eventually
reach a point of saturation.

The physical differences in the flow between the linear and nonlinear PSE
calculations are illustrated in figures 11 and 12. When compared to the equivalent
vorticity contours from the direct calculations, we can conclude that the linear PSE
calculations fail to completely capture the vortex roll up and pairing mechanisms. In
the uncorrected linear PSE simulations, the perturbations in the fundamental mode
lead to alternating patterns of vorticity, but the roll up phenomena is not present.
The unbounded growth of the mode also causes increasingly high concentrations
of vorticity which eventually exceed the contours of the plot. The inclusion of the
corrected mean flow helps to alleviate this problem, but the vortex roll up pattern is
still seen to be incomplete. In figure 12, the mean flow corrected linear PSE simulation
for M050M025 eventually results in discrete vortices, but the pairing process near
x = 100 is still very different from the phenomena shown by the corresponding
nonlinear PSE or direct calculation plots.

Comparisons of the fully nonlinear PSE simulations with the equivalent direct
calculations show the importance of including the mean flow correction and modal
interactions. Once both effects are accounted for, the large-scale vortical structures
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to −0.3 in steps of 0.025.
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Figure 12. Spanwise vorticity contours ωz for the subsonic mixing layer M050M025, as
computed by direct calculation (upper left), nonlinear PSE (upper right), linear PSE (lower
left) and linear PSE with corrected mean flow (lower right). Contour levels range from −0.20
to −0.05 in steps of 0.01.

computed from instability theory closely match those from direct computations.
These results are in good agreement with the findings of Day et al. (2001), who
also compared linear and nonlinear PSE simulations of reacting mixing layers. The
implications of these nonlinear effects for sound radiation are stressed in the present
paper.
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4.3. Initial amplitudes and saturation location

From the results shown in § 4.2, one could surmise that if the correct mean flow
were obtained, linear theory would be sufficient in predicting the evolution for the
most unstable instability waves. However, the initial amplitudes of the instability
modes provided at the inlet can also play a large role in determining the downstream
dynamics of the mode, and ultimately the emitted sound from the mixing layer. In
the following section, we show the necessity of using both the corrected mean flow
and the corresponding initial mode amplitudes in order to obtain correct predictions
from linear theory.

For the subsonic M25M15 mixing layer, three pairs of linear and nonlinear
PSE simulations were computed, with each pair of simulations using a different
initial amplitude (2ε1, ε1 or ε1/10) for the fundamental mode. In the nonlinear PSE
simulations, the higher harmonics were fully coupled and the mean flow correction
appropriate to the set initial amplitude was accounted for. In all of the complementary
linear PSE simulations, only the corrected mean flow corresponding to the ε1 case
was used, but the simulations did not include any coupling to the instability modes.
Hence, for the 2ε1 and ε1/10 linear PSE simulations, there exists a mismatch between
the corrected mean flow and the corresponding initial amplitude of the instability
wave.

Comparisons of the modal kinetic energy growths are shown in figure 13(a). As
expected, the fundamental mode in the linear PSE simulations behave identically,
except for a scaling factor determined from the initial amplitude. Following an
initial exponential growth region, all of the linear PSE modes saturate at the same
downstream position, and the final amplitudes vary according to the scaling factor.
On the other hand, the fundamental modes in the nonlinear PSE simulations saturate
at different downstream positions depending on their initial amplitude, while the
saturation amplitudes remain approximately constant. Similar behaviour for the
pressure amplitudes away from the centreline is shown in figure 13(b). The far-field
pressures from the nonlinear PSE simulations all converge to approximately the same
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amplitude downstream, while the pressure amplitudes from the linear PSE simulations
depend on their initial amplitudes.

From these comparisons, we can conclude that for a given instability mode (close
to the most unstable mode), the saturation amplitudes and saturation location
are correctly predicted by linear theory only if both the correct mean flow and
corresponding initial amplitudes are provided. Because some of this information
cannot be found through linear theory alone, it appears that some elements of
nonlinearity must be incorporated to obtain an accurate picture of the most unstable
instability wave evolution. As noted earlier, nonlinear effects are much stronger for
other instability modes which grow via mode–mode interactions.

5. Subsonic mixing layers – acoustic radiation
The previous section demonstrated the influence of nonlinear interactions and

mean flow corrections in predicting the evolution of instability waves inside the shear
layer. In this section, we now consider the far-field behaviour for the fully nonlinear
subsonic simulations. Of particular interest is the transition of the instability wave
from ‘hydrodynamic’ behaviour in the near-field region to ‘acoustic’ behaviour in
the far field. Results from the nonlinear PSE simulation of M050M025 are shown
along with the complementary results from the direct calculations mentioned in § 3.
Because the phase speed of the fundamental and subharmonic mode of M050M025
are subsonic relative to both streams of the mixing layer, the instability waves are
not directly coupled to the far field, and the sound generation mechanism in this case
is due to vortex pairing.

The first comparisons shown in figure 14(a) depict the streamwise evolution of the
pressure P̂1 at the subharmonic frequency at two vertical locations: inside the shear
regions of the flow (at y =0) and in the far field (y = 30). In the near-field region of the
flow the pressure fluctuations grow exponentially during the initial linear instability
phase, before eventually saturating near the vortex pairing location. Not surprisingly,
the growth rate and the saturation amplitudes for P̂1(x, y = 0) along the centreline
are well predicted by the nonlinear PSE computation. However, in the acoustic field,
the predictions from nonlinear PSE begin to diverge from the direct calculation. At
y = 30, the PSE calculations generally underpredict the pressure radiated to the far
field by an order of magnitude or greater, except near the vortex pairing location,
where the pressures are comparable. In contrast to the radiation patterns of the
supersonic mixing layer, sound is radiated in both the downstream and upstream
directions of the vortex pairing. From this near-field data it is not clear whether the
acoustic radiation is ‘superdirective’ or a simpler composition of multipole fields.

This behaviour is further explored by considering the cross-sections of the pressure
in the y-domain at different streamwise locations. In figure 14(b), the subharmonic
pressure P̂1(x = 50, y) is considered at a point upstream of the vortex pairing location.
The direct calculation and nonlinear PSE calculation both agree in the near field
region (|y| � 20), but the pressure calculated by PSE decays to much lower levels
than its directly computed counterpart. The directly calculated pressure shifts to the
slower algebraic decay at an earlier point than PSE, leading to a larger amplitude
predictions in the far field.

Near the vortex pairing location the far field behaviour of the pressure is more
comparable between the two methods of calculation. At the streamwise location of
x = 125.0 (figure 14c), both calculation methods predict a similar transition point
to the slower algebraic decay of the pressure eigenfunction. Near this location the
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Figure 14. The streamwise pressure |P̂1(x)| for the subsonic M050M025 mixing layer (a) along

y = 0 and y =30. Also shown are the cross-stream pressure |P̂1(y)| at downstream positions
(b) x = 50 (c) x = 125 (d) x = 250. Direct calculation: solid lines ( ). NPSE: dashed-dot
lines ( ).

far-field pressures calculated by the PSE simulation are generally on the same order
of magnitude. For the M050M025 mixing layer this region of agreement is limited to
a small region around the vortex pairing location, near 120 � x � 130.

Further downstream of the vortex pairing location the PSE predictions and direct
calculations of the far field again diverge. At position x = 250.0 (figure 14d ), the
pressure calculated by nonlinear PSE is approximately two orders of magnitude
smaller than the direct calculations. Inside the near-field region, however, the PSE
method correctly predicts the hydrodynamic behaviour for both the subsonic shear
layers.

6. Acoustic analogy
In previous sections, we noted that nonlinear instability wave theories could

correctly predict the near-field hydrodynamic behaviour of subsonic mixing layers, but
underpredicted the far-field acoustic radiation emanating from the vortex roll up and
pairing triggered by the instability. In this section we show it is possible to combine the
instability wave approach with an acoustic analogy, and properly capture the acoustic
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wave propagation. We demonstrate both the accuracy of the source terms computed
using nonlinear PSE information and the predictions obtained from applying Lilley’s
acoustic analogy. Lastly, we discuss the importance of using nonlinear theory in
computing the source terms versus using a purely linear theory.

6.1. Source terms

We first consider the overall structure of the source terms computed by the nonlinear
PSE and direct computations for the M050M025 mixing layer. As described by
(A 13) and (A 14), the source term at the subharmonic frequency Γ̂1(x, y) can be
divided into momentum (Γ̂m) and thermodynamic (Γ̂t ) components in order to assess
their relative contributions to the predicted far-field sound. The linearized version
of the inhomogeneous Lilley–Goldstein equation also requires a parallel mean flow
φ̄(y), which we take near the point of subharmonic saturation, at x = 100, for the
M050M025 mixing layer. The sensitivity of the acoustic predictions to the choice of
the mean flow location is discussed in § 6.4. Also, in the computation of the nonlinear
PSE, the inlet amplitudes ε1 were not altered and consistent with the mean flow used
in the Lilley–Goldstein equation.

A qualitative assessment of the source terms Γ̂m and Γ̂t is provided by the contour
plots in figure 15. When the results from the nonlinear PSE calculations are compared
against their directly computed counterparts, we can see that the magnitude and extent
of the source terms have been relatively well predicted. The peak source terms occur
near the vortex pairing location and are relatively limited in the transverse direction.
The thermodynamic source terms in figure 15(c, d ) are also an order of magnitude
smaller than the momentum source terms, as would be expected for an isothermal
mixing layer.

Cross-sections of the source terms for the isothermal subsonic shear layer in
figure 16 provide a more quantitative examination of the source term structure. In
figure 16(a), the transverse structure of the momentum and thermodynamic source
terms is shown at the location of vortex pairing (x = 100) and the compact nature
of the source terms in the y-direction is visible. Both nonlinear PSE and direct
calculations predict that the source terms decay exponentially rapidly outside the
range −10 � y � 10 and are essentially negligible in the free stream. From figure
16(b), the streamwise structure of the momentum source term Γ̂m(x, y =0) involves
an initial development region from about 0 � x � 60, also peaks near the vortex
pairing location. Downstream of the vortex pairing location the source terms decay
by approximately an order of magnitude by x =200. As noted previously, the
thermodynamic source terms for the M050M025 mixing layer are small compared to
the momentum source terms. Although the nonlinear PSE version predicts a slightly
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Figure 17. Far-field acoustic predictions from DNS, PSE and hybrid PSE-acoustic analogy

methods for the isothermal subsonic shear layer. (a) |P̂1(y)| at x = 75 and (b) |P̂1(y)| at x =175.
Direct calculation: solid line ( ), PSE: dashed line ( ), Lilley’s equation: dashed-dot
line ( ).

higher peak for Γ̂t (x, y = 0) than the direct computation, it is still negligible compared
to the momentum source term.

6.2. Lilley’s far-field predictions

Given the source terms calculated in § 6.1, we now make use of the acoustic analogy
to recover the acoustic field that was missing from the nonlinear PSE solution.
By employing (A 16) to calculate the far field pressures, we can compare the
new predictions to values previously obtained from the nonlinear PSE and direct
calculations.

In figure 17 we re-examine the near-field and far-field pressure behaviours of
the subsonic M050M025 mixing layer. Upstream of the vortex pairing location at
x = 75, the calculations from Lilley’s equation correctly predict the far-field behaviour
in the upper and lower free stream, while the pressure eigenfunction in the PSE
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Figure 19. Far-field acoustic predictions, Re{P̂1(x, y)} using Lilley’s acoustic analogy on the
subsonic M050M025 mixing layer. Pressure contours are the same as in figure 3(b).

method continues to decay exponentially. Downstream of the vortex pairing location,
at x = 175, the predictions from Lilley’s acoustic analogy also correctly predict the
amplitude of sound radiated away, while the PSE method alone underestimates the
pressure by approximately an order of magnitude.

The streamwise behaviour of the far-field pressure is also improved using predictions
from the combined nonlinear PSE-acoustic analogy approach. Whereas much of the
upstream and downstream sound is absent from nonlinear PSE calculations, the
pressure amplitudes |P̂ (x, y =30)| given by the acoustic analogy predictions are
comparable to the directly calculated pressures (figure 18). Finally, the radiation
patterns shown in figure 19 illustrate the acoustic field resulting from vortex sound
generation, and agrees qualitatively with figure 3(b) from the directly computed
mixing layer.
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6.3. Linear versus nonlinear source terms

In the next example of the combined PSE-acoustic analogy approach, we consider
acoustic predictions for the subsonic M25M15 mixing layer and compare the effects
of source terms calculated with and without nonlinearity. Two series of calculations
were carried out, one using data from the nonlinear PSE, and the other using linear
PSE.

In the first series, nonlinear PSE was used to calculate the source terms for the
Lilley–Goldstein equation, and the predictions were compared against the direct
calculations described in § 3. The comparisons for the pressure P̂1 at the fundamental
frequency, shown in figure 20, resemble the predictions for the M050M025 subsonic
mixing layer from § 6. The results from Lilley’s acoustic analogy generally capture
the levels of acoustic radiation in the far field, although the predictions for the
lower stream are generally more accurate than in the upper stream. In the initial
region (0 < x < 114), Lilley’s predictions fail to capture sound emitted during the roll
up and exponential development phase of the instability wave. The inaccuracy in
this region may stem from the parallel flow assumptions used in the creation of
the simplified source terms, since the actual mean flow is not strictly parallel near the
vortex roll up and pairing locations. Hence, the associated Green’s functions for the
Lilley–Goldstein equation may be inadequate in capturing the upstream sound.

In the second series of calculations, Lilley’s source terms were calculated from
a linear PSE simulation with the corrected mean flow and excluding any modal
nonlinear interactions. Additionally, the initial inlet amplitude ε1 for the linear
PSE and Lilley–Goldstein calculations were identical to the nonlinear PSE from
the first series of calculations. The results obtained from these computations were
again compared to the direct calculations and the nonlinear calculations discussed
above. From figures 20(a) and 20(b), we can immediately observe that using linearly
calculated source terms in the acoustic analogy produces little far-field noise. This can
be explained, as in Sandham, Salgado & Agarwal (2008), by considering the quadratic
nature of the Lilley source terms in (A 11b). A simple expansion of the source term

at the fundamental frequency involves terms from both the fundamental φ̂1 and the
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first harmonic φ̂2. However, because the linear PSE calculations failed to properly
excite the first harmonic (§ 4), the resulting source term at the fundamental is also
inaccurate. Not surprisingly, when the source terms from linear PSE are examined
in this particular case, we find that their typical amplitudes are several orders of
magnitude below those computed from nonlinear PSE.

Taking these findings into consideration, we can make the following observations
regarding the aeroacoustic behaviour of mixing layers. For instability waves with
supersonic phase speed relative to one of the free streams, they are associated with
a direct Mach wave radiation. This Mach wave radiation can be predicted using a
linear stability wave theory, but only after appropriate accounting of the nonlinear
effects. The instability wave growth rate and its saturation need to be accurately
captured. However, for instability waves with a subsonic phase speed relative to the
free stream, the sound radiation is due to a different physical mechanism – vortex
pairing noise. Accurate predictions of the far-field sound in this case heavily depend
on using the correct mean flow and accounting for nonlinear modal interactions.
In addition, although nonlinear stability wave theory can capture the growth of the
instability wave, it must be supplemented with an additional method such as an
acoustic analogy to capture the acoustic radiation.

6.4. Sensitivity to mean flow location

As mentioned in § 6.1, a preliminary study regarding the sensitivity of the acoustic
field was conducted to determine the most appropriate choice of the mean flow
profile φ(y) to use in Lilley’s acoustic analogy. Our results indicated that the choice
of the mean flow profile location can affect the directivity of Lilley’s acoustic analogy
predictions. This is shown in figure 21, where the pressure predictions |P̂1(θ)| are
plotted for mean flows selected at various locations, using data sampled at a distance
R = 50 away from the apparent source location, and where the angle θ is chosen to
be 0◦ pointing in the downstream direction. From these results we can make two
general observations.

First, for mean flow profiles located downstream of the instability wave and source
term peak location, e.g. the profiles taken at x = 125, 150 and 200 in figure 21, the
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directivity of acoustic radiation shifts towards higher angles. For these profiles the
higher angle lobe at ∼ 75◦ dominates over the lower angle lobe at 40◦–45◦, and
radiation towards lower angles is suppressed. This contradicts earlier evidence from
the direct calculations and previous studies of mixing layer aeroacoustics (Colonius
et al. 1997), which have suggested that the peak acoustic radiation from vortex pairing
should occur at angles less than 60◦.

Secondly, for mean flow profiles located upstream of the sound source peak, the
acoustic radiation peak at lower angles is recovered. However, using profiles located
too close to the inlet or upstream of the vortex roll up location generally caused
over-estimations of the far-field pressure, as in the case of the profile selected from
x = 50.

Given these observations, the choice of the mean flow profile near the saturation
location and sound source peak at x =100 seems to avoid problems associated with
the directivity and amplitude of the acoustic predictions, and this profile was used
in all computations in § § 6.1–6.3. However, from our preliminary investigations, the
need for a comprehensive study on the sensitivity of Lilley’s acoustic analogy to the
mean flow profile is apparent. By using the non-parallel acoustic analogy formulation
from Goldstein (2003), or the adjoint Green’s function approach of Tam & Auriault
(1998), better insight may be gained into the refraction of sound from a spreading
mean flow.

Lastly, we also provide some comments regarding the effects of three dimensionality
on the dynamics and aeroacoustics of the mixing layers discussed in this work.
Although oblique modes were not considered as a part of this work, some previous
studies have provided hints as to how three dimensionality may affect our current
results. For supersonic mixing layers, the higher growth rate of oblique modes (Jackson
& Grosch 1989) should lead to stronger acoustic radiation, but the mechanism of
sound generation (Mach wave radiation) is expected to remain the same as in
the two-dimensional case. For the subsonic case, the work of Rogers & Moser
(1992) in incompressible mixing layers highlighted the collapse of rib vortices and the
distortion of the vortex core in the formation of kinks along the rollers. The nonlinear
mechanisms involved in these processes may also serve to generate or modify sound
sources, similar to the role of the nonlinear vortex pairing process in the creation of
sound sources in the two-dimensional case.

7. Conclusions
In this paper, we examined the linear and nonlinear behaviour of instability

waves in two-dimensional mixing layers, and highlighted the influence of nonlinearity
to the dynamics and aeroacoustics of the shear layers. The effects of nonlinear
interactions, mean flow correction and inlet amplitude conditions were examined
using a combination of direct calculation, linear and nonlinear stability methods.
Both supersonic and subsonic compressible mixing layers were considered.

From the results of our computations, several general observations appeared
regarding the linear and nonlinear processes in mixing layers can be made. First,
nonlinear interactions are largely responsible for the excitation and development of
the higher harmonic instability waves. Even in cases where the primary instability
mode behaves linearly (over a specific region of the flow), nonlinear coupling
will trigger the growth of higher harmonics which can contribute to the acoustic
radiation that is missing from the purely linear analysis. Secondly, the mean flow
correction generated by finite amplitude instability modes was observed to be critical



Linear and nonlinear processes in mixing layers 343

in determining the appropriate saturation levels of instability modes. Using a linear
theory without any mean flow modification resulted in non-physical instability wave
amplitudes downstream, and a fully nonlinear treatment with mean flow correction
was required to predict the development of instability waves past the saturation point.
In addition, both the nonlinear interactions and mean flow correction were observed
to be necessary in capturing the dynamics of large-scale vortical structures in the near
field.

Similarly, the results of several computations illustrated the need for a fully
nonlinear theory in order to predict the effects of the inlet conditions on the dynamics
and acoustics of the mixing layer. While linear theory predicts a similar saturation
location for all instability waves regardless of initial inlet amplitude, nonlinear effects
were vital in determining position of the vortical structures, and consequently, the
noise source locations. Based on these observations, the need to account for the
interaction between the mean flow and the instability waves, and among the instability
waves themselves, becomes apparent.

The effects of nonlinearity could also be seen in the aeroacoustic behaviour of the
mixing layers as well. For supersonic mixing layers, where Mr,i > 1 in at least one
fluid stream, the dominant mechanism of sound generation was Mach wave radiation.
In these cases the far-field sound was directly coupled to the behaviour and growth
of instability wave. Thus, the nonlinear interactions discussed above directly impacts
the amplitude and structure of the Mach wave radiation. For subsonic mixing layers,
where Mr,i < 1, the primary mechanism of sound generation is due to vortex pairing
initiated by the interactions of the fundamental and subharmonic instability modes.
In this instance, capturing the dynamics of the near-field vortical structures becomes
critical and neither the nonlinear interactions nor the mean flow correction can be
neglected.

Although nonlinear PSE provided an accurate description of the near-field
hydrodynamic motions, its solution underestimated the acoustic pressure field for
subsonically convected waves. However, by using source terms calculated from
nonlinear PSE in the Lilley–Goldstein equation, the resulting far-field sound
was found to be in good agreement with direct calculations. Lastly, this paper
demonstrated the need to account for nonlinear interactions in computing the acoustic
source terms. Using linear PSE to calculate the source terms in Lilley’s acoustic
analogy led to large underpredictions of the acoustic far field.
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(NDSEG) Fellowship, and a National Science Foundation (NSF) Graduate Research
Fellowship. Computational resources were provided in part by the Air Force Office
of Science Research (AFOSR), contract number FA9550-04-1-0031.

Appendix A. Mathematical details
A.1. Direct calculation

Further details regarding the direct numerical simulation (DNS) of a single phase
two-dimensional compressible mixing layer are presented in this section.

The variables in (2.1a)–(2.1d) have been non-dimensionalized using the initial
vorticity thickness δ0 and values from the upper stream, including the speed of sound
a1, density ρ1, temperature T1 and viscosity μ1. The value for the ratio of specific
heats in the upper stream γ = cp,1/cv,1 is taken to be 1.4. Finally, the non-dimensional
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Reynolds number and Prandtl number are set to be Re = ρ1a1δ0/μ1, Pr = μ1cp,1/k1,
respectively, where k1 is the thermal conductivity of the fluid in the upper stream.

The solution to (2.1a)–(2.1d) were found through highly resolved numerical
computations developed specifically for aeroacoustics applications. The basic
numerical code was provided by Lui (2003), and used a sixth order compact
finite difference scheme with spectral-like resolution (Lele 1992) in the transverse
(y) and streamwise (x) directions. For time advancement, a two-step fourth-order
Low Dissipation and Dispersion Runge–Kutta (LDDRK) scheme was employed.
Sponge regions were placed in all outflow boundaries to suppress reflections and
coordinate stretching in the y-direction allowed for an efficient allocation of grid
points in the near- and far-field regions.

In order to obtain statistics in the frequency domain, data from the direct
calculations were Fourier transformed in time, and instability wave energies were
computed accordingly. The basic discrete transform

φ̂′
m(x, y) =

1

N

N−1∑
j=0

φ(x, y, tj )e
iωmtj (A 1)

was used where φ is any fluid variable and N samples were gathered over a period
T = 2π/ωm at the frequency of interest. The values of φ̂′

m were computed by direct
summation with either N = 32 or 64 samples obtained from the direct calculation.

One major statistic used in comparing the eigenmode behaviour between the direct
calculation and PSE simulations is the integrated modal energy of the eigenmode.
While the energy of the mode used in Day et al. (2001) involved only the kinetic
energy components, the definition used here stems from the work of Chu (1965), and
includes the energy due to temperature and density fluctuations.

Em =

∫ ∞

−∞

{
ρ̄ (|û′

m|2 + |v̂′
m|2) +

γ − 1

γ

|ρ̂ ′
m|2

2ρ̄
+

ρ̄ |T̂ ′
m|2

2T̄

}
dy (A 2)

A.2. PSE formulation

A simpler more insightful model for the behaviour of the mixing layer can be utilized
in cases where the inlet forcing is harmonic and the development of the shear layer
is slow compared to the wavelength of the instability wave. Under these restrictions,
the Navier–Stokes equations (2.1a)–(2.1c) can be reduced to a parabolized system
governing the evolution of the instability waves and their nonlinear interactions.
While the PSE approach has been largely standardized since its development by
Bertolotti et al., we provide a brief account of this method as it pertains to our work.
Additional implementation details can be easily found in Malik & Chang (2000) and
Day et al. (2001).

The model begins by separating the vector of flow variables φ =[ρ u v T]T into

mean φ̄ and disturbance φ̃ components via the assumption φ = φ̄ + φ̃. The mean flow
quantities φ̄ are found through a similarity solution of the compressible boundary
layer equations, as in Schlichting et al. (2004). The disturbance quantities φ̃ are

assumed to be expressible as an expansion over eigenmodes φ̂m:

φ̃(x, y, t) =

M∑
m=−M

φ̂m(x, y)Am(x)e−iωmt , (A 3)
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where the amplitude portion Am(x) is written as

Am(x) = εm exp

{
i

∫ x

0

αm(x ′) dx ′
}

. (A 4)

In (A 3) and (A 4), an initial amplitude εm is provided for each eigenmode φ̂m, with
an associated wavenumber αm and temporal frequency ωm. The temporal frequency
of each mode is set to be an integer multiple of a base frequency ω, so that ωm = mω.

In contrast to parallel linear stability theory, both φ̂m and αm are allowed to evolve
downstream in x through a set of slowly varying assumptions. If the mean flow
quantities φ̄ evolve over a much longer length scale than the spatial wavelength of

the instability wave, then the first derivatives of φ̂m and αm can be retained, and a
parabolization of the governing equations is possible.

The slow rate of evolution in the mean flow usually translates into the assumptions

1

Re

∂φ̄

∂x
� O(1) and

∂2φ̄

∂x2
� O(1), (A 5)

and these terms can then be ignored in the derivation of the PSE. Similarly, the PSE
restricts the downstream changes in the eigenfunction and growth rate by assuming
that the terms

∂2φ̂m

∂x2
� O(1) and

∂2αm

∂x2
� O(1), (A 6)

and can be neglected as well. The final restriction on the disturbances admissible in
PSE is that the instability waves are convectively unstable, and not absolutely unstable
(Huerre & Monkewitz 1990). This ensures that for any given region, any oscillations
will remain bounded in time.

Using (A 3) and the slowly varying assumptions (A 5) and (A 6) in the governing
equations (2.1a)–(2.1c) yields a set of nonlinear disturbances equations (2.2) which
form the basis of the nonlinear PSE method. The linear operator Lm can be broken
down in terms of

Lm = −iωmG + A

(
iαm +

∂

∂x

)
+ B

∂

∂y
+ C

∂2

∂y2
+ D +

∂αm

∂x
N, (A 7)

where the matrices A, B, C, D, G and N are functions of the mean flow variables φ̄

only. The right-hand side of (2.2) contains the nonlinear forcing function Fm due to
the higher order products of disturbances φ̃.

By removing all streamwise derivatives, and viscous terms, and setting v̄ = 0, the
Rayleigh operator

LR {φ̂m} =
{
−iωmG′ + A′ (iαm) + B′ ∂

∂y
+ C′ ∂2

∂y2 + D′} φ̂m (A 8)

can be recovered from (A 7). Solutions to (A 8) are used as initial conditions to both
the PSE calculations and the direct numerical calculations.

The linear PSE formulation is obtained from (2.2) by setting Fm = 0. Because
Lm contains only a single derivative in the x-direction, (2.2) can be efficiently solved
through a streamwise marching procedure. A first-order backwards Euler method with
variable step size was used to speed calculation and to avoid problems with numerical
stability Andersson, Henningson & Hanifi (1998). In general, PSE computations
required an order of magnitude fewer computational resources than the equivalent
direct computations, usually about O(102) versus O(103) CPU-hours on an Intel Xeon
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cluster. Further details regarding the form of (2.2), the slowly varying assumptions
and the mean flow correction, are given in Appendix A2.1 and Cheung (2007).

A.2.1. Normalization conditions

An additional constraint must be placed on (2.2) in order to make the system
solvable. The need for this additional normalization constraint arises from the extra
degree of freedom inherent in the representation (A 3) – streamwise variations of

φ̃(x, y) can be absorbed into either α(x) or φ̂(x, y). This ambiguity in x can
be eliminated by placing an additional normalization constraint on either the
eigenfunction, the eigenvalue or both. Many normalization conditions have been
proposed that limit rapid changes in the eigenfunctions (Bertolotti et al. 1992). For
this work, the usual integral norm is generalized to include all components of the

eigenfunction φ̂∫ ∞

−∞

[
W1ρ̂

†
m

∂ρ̂m

∂x
+ W2

(
û†

m

∂ûm

∂x
+ v̂†

m

∂v̂m

∂x

)
+ W3T̂

†
m

∂T̂m

∂x

]
dy = 0, (A 9)

where the weights W1, W2, W3 correspond to different normalization conditions. For
the kinetic energy based norm, we set the weights W1 = W3 = 0 and W2 = 1. A second
norm with weights W1 = (γ − 1)T̄ /γ ρ̄, W2 = ρ̄ and W3 = ρ̄(γ − 1)/(γ 2T̄ P̄ ) was also
used to calculate the total disturbance energy (Chu 1965). In practice, the choice of
weights had negligible impact on the overall results (Cheung 2007).

A.2.2. Mean flow correction

When the amplitude of the eigenfunctions in nonlinear PSE calculations reaches a
finite size and modal interactions start to play an important role in the flow dynamics,

the nonlinear terms will inevitably redistribute some amount of energy to the mode φ̂0

at zero frequency. This redistribution of energy indicates that the disturbances have
grown to the extent that they are capable of modifying the mean flow, and a nonlinear
correction to the mean flow is in order. This correction can be accommodated by
adding components of the zero frequency mode to the original laminar mean flow
components

φ̄′ = φ̄ + φ̂0(x, y)A0(x). (A 10)

Although the zero-frequency mode is solved in a similar manner as all of the
other finite-frequency modes, the mode is not present at the initial step of the PSE
calculation. When the maximum of nonlinear forcing term F̂0 exceeds a set threshold,
the zero frequency mode is initialized by solving (2.2) with no ∂/∂x terms, and ω0 = 0,
α0 = 0 initially. The growth of the mode is controlled by changes in α0,i , and the
boundary conditions are identical to the conditions imposed on other modes. The
influence and importance of the mean flow correction on shear layer flows is evident
in some of the simulations, especially in cases where vortex pairing causes rapid
changes to the thickness of the shear layer.

A.3. Lilley’s equation

As mentioned previously, in some situations the instability wave model will fail to
provide a complete description of the far-field acoustics for subsonic mixing layers.
For these subsonic mixing layers, it becomes necessary to extend the formulation to
include a model of the source terms and a method to propagate the solution to the far
field. In the present case, we describe how the acoustic solution can be found through
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an appropriate acoustic analogy using near-field source terms calculated from PSE
and Lilley’s wave equation.

Based on the work of Goldstein (2001), we express the acoustic analogy in terms of
a parallel sheared flow Ū (x2) with a source term composed of a velocity quadrupolar
component and a fluctuating temperature dipole component

L̄0π =
D0

Dt

∂fi

∂xi

− 2
∂Ū

∂xj

∂fj

∂x1

, (A 11a)

where

fi = − ∂

∂xj

(1 + π) ũj ũi − c̃2
∂π

∂xi

(A 11b)

and c̃2 = (γ − 1)T̃ . The third-order linear operator is given by

L̄0 ≡ D0

Dt

(
D2

0

Dt2
− ∂

∂xi

c2
∂

∂xi

)
+ 2

∂Ū

∂xi

∂

∂x1

c2
∂

∂xi

where the material derivative is D0/Dt = ∂/∂t + Ū∂/∂x1 and the pressure variable is

π =

(
P

P0

)1/γ

− 1. (A 11c)

The source terms on the right-hand side of (A 11a) are evaluated using information
from the PSE calculations. As shown in § A3.1, the far-field pressure is solved
by converting (A 11a) to a single ordinary differential equation through Fourier
transforms in x and t .

In general, the solution to the parallel flow Lilley–Goldstein’s equation will consist
of a particular solution plus homogeneous solutions. Goldstein & Leib (2005) point
out that these homogeneous contributions correspond to spatially growing instability
waves which have the potential to grow unbounded far downstream in the flow.
Their solution to this problem was to use a vector Green’s function approach on a
slightly non-parallel flow. The diverging non-parallel base flow would then ensure that
the instability waves contributions grow and eventually decay. However, in this work,
the mean flow Ū (x2) is generally chosen at, or slightly after, the point of saturation
of the eigenmode solution. After the point of saturation, the PSE solution for the
instability waves were found to be either neutral or decaying, which would suggest that
they would remain bounded downstream. On the other hand, if the base mean flow was
set near the inlet position, where the fundamental and subharmonic instability waves
were initially unstable, then the Goldstein & Leib concerns about the unbounded
growth of the homogeneous solutions would apply.

A.3.1. Solution to Lilley’s equation

The problem posed by the Lilley–Goldstein equation[
D0

Dt

(
D2

0

Dt2
− ∂

∂xi

c2
∂

∂xi

)
+ 2

∂Ū

∂xi

∂

∂x1

c2
∂

∂xi

]
π = Γ (A 12)

in § A.3 can be converted into a single ordinary differential equation inthe transverse
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direction y and solved numerically. Following Goldstein (2005), the source term Γ

can be split into the momentum Γm and thermodynamic Γt components

Γm =

[
D0

Dt

∂

∂xi

− 2
∂Ū

∂xi

∂

∂x1

](
− ∂

∂xj

(1 + π) ũj ũi

)
, (A 13)

Γt =

[
D0

Dt

∂

∂xi

− 2
∂Ū

∂xi

∂

∂x1

](
−c̃2

∂π

∂xi

)
. (A 14)

For a given source term Γ , we can find the particular solution using a Fourier
representation of π and Γ in the streamwise coordinate x and in time t

π(x, y, t) = e−iωt π̂(x, y) = e−iωt

∫
ψ(k, y)eikx dk. (A 15)

Applying the transformation to (A 12), we obtain the inhomogeneous Rayleigh
equation

Lψ =
iΓ̂ (k, y)

ω2(Ūκ − 1)c2
, (A 16)

where the left-hand side operator is

L =
d2

dy2
−

(
2κ

Ūκ − ω

dŪ

dy
− 1

c2

dc2

dy

)
d

dy
+ ω2

[
(Ūκ − 1)2

c2
− κ2

]
,

κ = k/ω and the Fourier transformed source term is

Γ̂ (k, y) = eiωt

∫
Γ (x, y)e−ikx dx.

The particular solution to the ordinary differential equation (A 16) can be found in
terms of the Green’s function G(y, ys), which is defined by

LG(y, ys) = δ(y − ys). (A 17)

Equation (A 17) can be solved numerically as a three-point boundary value problem,
using adaptive quadrature to integrate a function G−(y, ys) from y = −∞ to a
designated matching point ys , and a function G+(y, ys) from y = +∞ to ys . In the
Green’s function problem, we replace the Dirac delta function on the right-hand side
with the jump conditions at the match point

G+|ys
− G−|ys

= 0,
dG+

dy

∣∣∣∣
ys

− dG−

dy

∣∣∣∣
ys

= 1 (A 18)

and instead solve the homogeneous ODE. The boundary conditions are found by
examining (A 17) in the free stream, where the derivatives dŪ/dy and dc2/dy vanish,
resulting in [

d2

dy2
+ ω2

((
Ūκ − 1

)2

c2
− 1

)]
G(y, ys) = 0.

This yields far-field solutions in terms of decaying exponentials, where

G(y, ys) → exp {iqy} , as y → ±∞,
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the variable q is defined as q = ω(

√
(Ūκ − 1)2/c̄2 − 1), and the sign on the square is

always chosen to yield a decaying function for G as y → ±∞.
Although the numerical solution to (A 17) can be calculated rather quickly for a

single matching point ys , the complete solution for ψ in (A 16) requires G(y, ys) to
be found for many matching points ys . Fortunately, a reciprocity relation exists for
the Green’s function at hand

G(y, ys)

(Ū (y)k − ω)2
=

G(ys, y)

(Ū (ys)k − ω)2
, (A 19)

and can be used to calculate G(ys, y) at any ys once G(y, ys) is calculated over the y

domain (Ray 2006). To obtain the final solution, the convolution integral is used

ψ(k, y) =

∫ ∞

−∞

iΓ̂ (k, ξ )

(Ū (ξ )k − ω) c̄2
G(y, ξ ) dξ (A 20)

to find ψ(k, y) at a particular wavenumber k. To find π̂ at a specific frequency ω,
ψ(k, y) is calculated at a number of points k, and (A 15) is used to transform ψ into
(x, y) space.

An additional complication arises in computing the solution to (A 16) and the
integral (A 20) when considering the critical layer singularity. For solutions where
the mean flow profile Ū (y) and frequency ω cause the term Ū (y) − ω to vanish, the
contour of integration C must be deformed off of the real y-axis to pass over the
critical point yc. Details regarding this procedure are given in Tam & Morris (1980)
and the appropriate branch cut for supersonic disturbances of the Rayleigh equation
is described in Lin (1955). In addition, the analytic continuation of the mean flow
profile Ū (y) must be accounted for, and we use the procedures detailed in Mitchell,
Lele & Moin (1999). In a similar fashion, around the critical point yc, the source term
Γ (x, y) must be extended into the complex plane to allow the contour deformation
to occur in integral (A 20).
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